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We have investigated the electronic structure of graphene under different planar strain distributions using the
first-principles pseudopotential plane-wave method and the tight-binding approach. We found that graphene
with a symmetrical strain distribution is always a zero band-gap semiconductor and its pseudogap decreases
linearly with the strain strength in the elastic regime. However, asymmetrical strain distributions in graphene
result in opening of band gaps at the Fermi level. For the graphene with a strain distribution parallel to C-C
bonds, its band gap continuously increases to its maximum width of 0.486 eV as the strain increases up to
12.2%. For the graphene with a strain distribution perpendicular to C-C bonds, its band gap continuously
increases only to its maximum width of 0.170 eV as the strain increases up to 7.3%. The anisotropic nature of
graphene is also reflected by different Poisson ratios under large strains in different directions. We found that
the Poisson ratio approaches to a constant of 0.1732 under small strains but decreases differently under large
strains along different directions.
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Graphene, a single-layer graphite sheet, is a zero band-
gap semiconductor.1,2 Since obtained successfully in 2004,1

it has attracted tremendous interests of theoretical and ex-
perimental studies. Graphene has unique electronic proper-
ties arising from its hexagonal honeycomb lattice structure,
which makes electrons in graphene behave as massless rela-
tivistic fermions that satisfy the Dirac equation.3 The quan-
tum Hall effect4 has been observed in graphene. Studies have
also shown that spin-orbital coupling exists in graphene5–8

and the quantum spin Hall effect may occur at ultralow
temperature.8 These and other unusual electronic properties
of graphene make it a promising material for building elec-
tronic devices. Nevertheless, absence of band gap in
graphene sets limitations on its practical applications. It is of
crucial importance to find methods to effectively tune the
band gap of graphene for broadening its applications in na-
noelectronics and optoelectronics. Recently, much attention
was devoted to the study of substrate-induced gap opening in
graphene associated with inversion symmetry breaking.9,10 It
has been shown that graphene systems without inversion
symmetry breaking possess unique magnetic and optical
properties.10

We have studied the electronic structure of graphene un-
der different planar strain distributions by the first-principles
pseudopotential plane-wave method and the tight-binding
�TB� approach. Our results show that strain distributions in
graphene significantly modify the band structure of graphene
around the Fermi level, resulting in remarkable change of the
pseudogap width in the case of symmetrical strain distribu-
tions and band-gap opening in the case of asymmetrical
strain distributions, which break the inversion symmetry. Our
findings indicate that electronic transport properties of
graphene can be effectively tuned by applying planar forces
to graphene along different directions.

Our calculations were performed using the density-
functional theory �DFT� method implemented in the plane-
wave basis VASP �Refs. 11 and 12� code. We used the pro-
jector augmented wave �PAW� �Refs. 13 and 14� potentials

and the generalized gradient approximation �GGA� of Per-
dew and Wang15 known as PW91. The total energy was con-
verged to within 1 meV with a kinetic-energy cutoff of 550
eV and a Monkhorst-Pack16 k-point mesh of 21�21�1 ��
included�. Atoms were fully relaxed using a conjugate gradi-
ent �CG� algorithm until the interatomic forces are less than
0.1 eV/nm. In order to eliminate interactions between
graphene layers, 2.05 nm of vacuum separation along the c
axis was used.

First, we studied the electronic properties of graphene in
the absence of strain, and found an in-plane lattice constant
of 0.246 69 nm, which is in good agreement with the experi-
ment value 0.2461 nm, and a direct zero band gap between �
bands crossing at each corner �K point� of the two-
dimensional �2D� hexagonal Brillouin zone17 �see Fig. 2�a��.
The results confirmed that VASP and the PAW method are
reliable and flexible to graphene. Sequentially, the electronic
properties of graphene with three types of strain distributions
were studied, namely: �i� symmetrical strain distribution
�keeping the hexagonal symmetry unchanged� as shown in
Fig. 1�a�, �ii� asymmetrical distribution perpendicular to C-C
bonds as shown in Fig. 1�b�, and �iii� asymmetrical strain
distribution parallel to C-C bonds as shown in Fig. 1�c�.

For the graphene with symmetrical strain distribution,
systems with lattice constants from 0.2009 to 0.5099 nm by
step of 0.005 nm were investigated. Figure 2�a� shows the
band structure, density of states �DOS�, and electron local-
ization function �ELF� of the graphene systems with lattice
constants of 0.2259, 0.246 69, 0.2709, 0.3209, 0.3759, and
0.4509 nm. From Fig. 2�a�, one can see that there is no
band-gap opening around the Fermi level for the graphene
with any strength of symmetrical tensile or compressive
strain. Nevertheless, strain results in remarkable change of
the pseudogap width around the Fermi level, as shown in
Fig. 2�b�. Tensile strain results in decrease in the pseudogap
while compressive strain leads to increase in the pseudogap.

The ELFs in Fig. 2�a� show that the size of the high
electron localization region between two carbon atoms

PHYSICAL REVIEW B 78, 075435 �2008�

1098-0121/2008/78�7�/075435�6� ©2008 The American Physical Society075435-1

http://dx.doi.org/10.1103/PhysRevB.78.075435


broadens gradually as the lattice constant increases. At the
lattice constant of 0.3759 nm, the high ELF splits into two
equal parts. As the lattice constant reaches 0.4509 nm, one
can only see large values of the ELF around each carbon
atom, indicating that the C-C bond weakens gradually as
increasing the lattice constant and eventually breaks down.

Figure 2�a� also shows that when the lattice constant is
less than 0.3209 nm, band crossing occurs at the K point of
the conduction and valence � bands. There is no band gap
near the Fermi level. However, as the lattice constant is
larger than 0.3209 nm, the shape of the band structure
changes greatly and the DOS at the Fermi level is larger than
zero, indicating that the system becomes metallic. From Fig.
2�a�, we find that there exist two DOS peaks around the
Fermi level, which form a pseudogap for the graphene sys-
tem with a lattice constant less than 0.3209 nm. Figure 2�b�
shows that the width of the pseudogap linearly decreases as
the lattice constant increases.

It is well known that in graphene the sp2 hybridization of
the 2s, 2px, and 2py orbitals of carbon atoms create lateral �
bonds, and the remaining 2pz orbitals form the � bands. Our
detailed calculations show that the states near the Fermi level
of the graphene systems with lattice constants varying from
0.2009 to 0.3159 nm are still determined by the 2pz orbitals.
Thus, we can use the TB approximation of the � orbitals to
explain the change of the pseudogap as the lattice constant
changes.

In the framework of the TB approximation, the energy
dispersion12 of a graphene system with lattice constant � is
described by

E��k�� = �2p 	 
f�k�� , �1�

with f�k��=�1+4 cos
�3kxa

2 cos
kya
2 +4 cos2 kxa

2 and 
= ��A�r�
−R� A��H��B�r�−R� A−R� 1,i�� �i=1,2 ,3�. Here, 
 is the hopping

integral, �2p is the energy of the C-2pz orbitals �a constant�,
and �A and �B are the C-2pz orbitals of the two C atoms at

positions R� A and R� B in the primitive cell as shown in Fig. 1.
The band-gap width is given by

Egap = 2�
�f�k�� . �2�

Because f�k�� is always zero at the K point of the Brillouin
zone, the band-gap width keeps zero at the Fermi level for
any values of the lattice constant. We found that the
pseudogap is determined by the M point in the band structure
where f�k��=1. As a result, the pseudogap width is given by
�pseudogap=2�
�, namely, linearly dependent on the hopping

FIG. 1. �Color online� �a� Graphene system with symmetrical
strain distribution, �b� asymmetrical strain distribution perpendicu-
lar to C-C bonds, and �c� asymmetrical strain distribution parallel to
C-C bonds. Corresponding primitive cells �in black�, reciprocal lat-
tices �in red dashed�, Brillouin zones �in blue �grey��, and irreduc-
ible Brillouin zones �in yellow �light grey�� are illustrated below the
deformed lattices. �, K, M, R, and S are the high symmetrical
points. Lx and Ly are the half diagonal lengths of the primitive cells.

FIG. 2. �Color online� �a� The band structure, DOS, and ELF for
symmetrical graphene systems with different values of lattice con-
stant. �b� The pseudogap width �arrow� as a function of lattice
constant.
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integral 
. In general, a large lattice constant leads to a small
value of �
�. Therefore, our first-principles result is in agree-
ment with the prediction by the above TB approach. Assum-
ing that 
 is linearly dependent on the lattice constant with

=A+B�a−a0�, we found A=−2.094 eV and B
=14.578 eV /nm by fitting 
 to the first-principles result in
Fig. 2�b�.

Asymmetrical strain distributions in graphene result in
different results. To study the graphene system with asym-
metrical strain distribution parallel to C-C bonds, we used a
deformed primitive cell with a fixed value of Ly. The value
of Lx was obtained as the system reaches its lowest total
energy during structural relaxation. The deformed primitive
cell with the given parameter Ly and the optimal parameter
Lx was then used to calculate the electronic structure. The
graphene systems with Ly varying from 0.2146 to 0.2496 nm
were studied. Figure 3�a� shows the band structure, projected
density of states �PDOS�, and ELF of the asymmetrically
deformed graphene systems with Ly =0.2146, 0.2256,
0.2396, and 0.2496 nm. The changes of Lx and the band-gap
width are illustrated in Figs. 3�b� and 3�c�, respectively. Fig-
ure 3�b� shows that Lx is linearly dependent on Ly as Ly is
between 0.2136 �without deformation� and 0.2296 nm, indi-

cating that the deformation is elastic. When Ly is larger than
0.2296 nm, Lx continues to decrease with a nonlinear decay
behavior. A remarkable difference of the band structure for a
graphene system with an asymmetrical strain distribution is
that the symmetry breaking results in band-gap opening at
the Fermi level. Figure 3�c� shows that the width of the band
gap increases with Ly in the regime of Ly 0.2396 nm and
then decreases for Ly �0.2396 nm. For 0.2136 nmLy
0.2396 nm, both the valence-band maximum and the
conduction-band minimum locate at K and R points, indicat-
ing that the system has a direct band gap. For Ly
=0.2396 nm, the conduction-band minimum locates at K
point and the valence-band maximum locates at the left side
of K point, indicating that the band gap is indirect. For
0.2396 nmLy �0.2496 nm, both the valence-band maxi-
mum and the conduction-band minimum locate at the left
side of K point and the band gaps become direct again.

The ELFs in Fig. 3�a� show that the shape of the high
ELF regions elongates along the direction of Ly while being
kept almost unchanged along the Lx direction. This indicates
that the C-C bonds become weaker along the Ly direction
while remaining strong along the Lx direction.

The PDOS in Fig. 3�a� shows that the states near the
Fermi level are contributed mainly by the 2pz orbitals. Thus,
the �-orbital TB approximation is applicable to the system.
We found that the energy dispersion of a graphene system
with the above asymmetrical strain distribution is given by

E��k�� = �2p 	 ��� , �3�

with

� = 
1�eik�·R� 1 + eik�·R� 2� + 
2eik�·R� 3,

R� i = R� Bi − R� A �i = 1,2,3� ,


1 = ��A�r� − R� A��H��B�r� − R� Bi�� �i = 1,2� ,


2 = ��A�r� − R� A��H��B�r� − R� B3�� .

Here R� A and R� Bi are the positions of C atoms marked in Fig.
1�c�. Equation �3� gives the band gap,

Egap = 2��� . �4�

Because of the symmetry breaking, the hopping integral 
1 is
not equal to hopping integral 
2. Our analysis to the function
� shows that the band gap can have nonzero values if 
1 is
not equal to 
2. We found that the first-principles result of
the band-gap width can be nicely given by Eq. �4� after
choosing appropriate values of 
1 and 
2. Figure 4 shows the
band structures of the graphene system with Ly
=0.2296 nm calculated by the first-principles method
�curves�, and by Eq. �4� �symbols� using 
1=−2.491 eV and

2=−2.03 eV. Apparently, two different methods give al-
most the same result in the energy region close to the Fermi
level, showing the existence of a band gap of 0.22 eV. This
confirms that it is the symmetry breaking that opens band
gap at the Fermi level.

Similar behavior exists in the graphene system with asym-

FIG. 3. �Color online� �a� The band structure, PDOS, and ELF
for the graphene systems with asymmetrical strain distributions par-
allel to C-C bonds. �b� Lx as a function of Ly. �c� The band-gap
width as a function of Ly.
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metrical strain distribution perpendicular to C-C bonds. In
these systems, Lx was given by a value between 0.1243 and
0.1353 nm, and the value of Ly was obtained when the sys-
tem reaches its lowest total energy during the structural op-
timization. The band structure, PDOS, and ELF for the sys-
tems with Lx of 0.1283, 0.1303, 0.1323, and 0.1343 nm are
shown in Fig. 5�a�. Changes of Ly and band gaps induced by
different values of Lx are illustrated in Figs. 5�b� and 5�c�,
respectively. Figure 5�b� shows that the response of Ly is

linear and thus elastic in the range of 0.1233 nmLx
0.1323 nm, where 0.1233 corresponds to the standard
graphene without deformation. For Lx�0.1323 nm, Ly con-
tinues to decrease but deviates from the linear behavior. Fig-
ure 5�c� shows that in the elastic region with Lx
0.1323 nm, the band-gap width increases as Lx increases,
whereas it decreases in the nonelastic region with Lx
�0.1323 nm. For 0.1233 nmLx0.1323 nm, both the
valence-band maximum and the conduction-band minimum
locate at K and R points, indicating that the system has a
direct band gap. For Lx=0.1323 nm, the conduction-band
minimum locates at R point and the valence-band maximum
locates at the right side of R point, indicating that the band
gap is indirect. When Lx is in the nonelastic region, both the
valence-band maximum and the conduction-band minimum
locate at the right side of R point, and thus the band gap
becomes direct again.

The PDOS in Fig. 5�a� shows that the states around the
Fermi level are mainly contributed by the 2pz orbitals of
carbon atoms. Using the same TB approach as described in
Eq. �3�, we found that the band-gap width obtained by the
first-principles method can be nicely reproduced by the TB
model as well. This further confirms that symmetry breaking
in graphene leads to band-gap opening at the Fermi level.

In summary, the electronic properties of graphene systems
with different types of strain distributions have been studied
by the ab initio calculations and the TB approach. Our re-
sults show that the nature of the band structure of graphene
depends on its lattice symmetry. With a symmetrical strain
distribution, the graphene does not open a band gap at the
Fermi level. In this case, one finds zero density of states at
the Fermi level and its pseudogap decreases linearly as the
strain increases. Asymmetrical strain distributions in
graphene open band gaps at the Fermi level. For the strain
distribution parallel to C-C bonds, the band gap increases
from 0 to 0.486 eV as the strain increases to 13.1% before it
decreases under large deformation. For the strain distribution
perpendicular to C-C bonds, the band gap increases from 0 to
0.170 eV as the strain increases to 4.91% before decreasing.
Clearly, the strain distribution parallel to C-C bonds induces
larger band gaps compared with the strain distribution per-
pendicular to C-C bonds.

We found that the anisotropic nature of the band-gap
opening of graphene under large strain is reflected by differ-
ent Poisson ratios in different directions. Figure 6 illustrates
the Poisson ratios �x and �y in the directions perpendicular to
or parallel to C-C bonds; here the Poisson ratios were calcu-
lated directly using the definitions �x= ��Lx /Lx� / ��Ly /Ly�
and �y = ��Ly /Ly� / ��Lx /Lx�. Figure 6 shows that, under
small strain �less than 2%�, the Poisson ratios in the two
directions take the same values, indicating that graphene is
isotropic under small strain. Under even smaller strain less
than 1.5%, we found that the Poisson ratios are a constant of
0.1732. However, in the regime of large strain �larger than
2%�, the two Poisson ratios apparently follow two different
decay behaviors, indicating that graphene is anisotropic un-
der large deformation. We note that understanding the elastic
properties of 2D graphene is not trivial due to the many-body
interatomic interactions as well as the charge redistributions
under finite deformations. Early studies suggested that the

FIG. 4. �Color online� Band structures of the asymmetrical
graphene system with Ly =0.2296 nm calculated by the first-
principles method �curves� and the tight-binding method �symbols�.

FIG. 5. �Color online� �a� The band structure, PDOS, and ELF
for the graphene systems with asymmetrical strain distributions per-
pendicular to C-C bonds. �b� Ly as a function of Lx. �c� The band-
gap width as a function of Lx.
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2D hexagonal symmetry of pure C lattice ensure its isotropic
elastic properties and thus can be described by an isotropic
shell model.18–20 The isotropic Poisson ratio under small de-
formations was found to be 0.149 by first-principles
calculations,20 which is close to the constant value of 0.1732
we obtained under small strain. Recently, a finite deforma-
tion continuum theory was derived from classical interatomic
potentials for the analysis of the elastic properties of 2D
graphene and carbon nanotubes,21 which shows that only the
infinitesimal elasticity tensor of 2D honeycomb lattices is
isotropic, leading to a Poisson ratio of 0.412 on the basis of
Brenner’s potential. The theory also pointed out that the elas-
tic properties of graphene under finite deformations can be
anisotropic. Molecular-dynamics simulations based on Bren-
ner’s potential were performed for understanding the elastic
properties of finite graphene sheets with finite deformation
and the computed elastic constants of rectangular-shaped
graphene sheets were found to conform to orthotropic mate-
rial behavior.22 For the rectangular graphene sheet with only
two edges constrained to be straight, the Poisson ratio is
0.416 and 0.465 for the strain distribution parallel to or per-
pendicular to C-C bonds, respectively. For the rectangular
graphene sheet with four edges constrained to be straight, the
Poisson ratio is 0.428 and 0.520 for the strain distribution
parallel to or perpendicular to C-C bonds, respectively. Our
first-principles result about the anisotropic behavior of the
Poisson ratio for the graphene under large strain qualitatively
agrees well with the trend observed in the molecular-
dynamics study. We note that, because large strains induce
significant changes of the band-gap structure and electron
redistribution, the elasticity anisotropy of graphene is a quan-
tum effect that cannot be elucidated completely by applying
the classical theory of elasticity. This is why classical poten-
tials can only give a Poisson ratio that is almost three times
larger than the values obtained by the first-principles calcu-
lations.

In general, breaking the hexagonal symmetry is expected
to modify the band structure of graphene.9,10 In previous

studies, the symmetry breaking of graphene is introduced
either by substrates or by cutting graphene to form ribbons. It
has been demonstrated that the asymmetrical surface of SiC
induced by the surface reconstruction opens band gaps in
graphene.9 It has also been shown that breaking the symme-
try of graphene by cutting it along different directions leads
to graphene ribbons with very different electronic
properties.23–25 The ribbons with zigzag edges obtained by
cutting graphene along the direction perpendicular to C-C
bonds are metals while those with armchair edges obtained
by cutting graphene along the direction parallel to C-C bonds
are semiconductors.23–25 In our situation, symmetry breaking
is induced by the strain perpendicular or parallel to C-C
bonds, which corresponds to the zigzag edge or the armchair
directions, respectively. Therefore, our results about the an-
isotropic behaviors of the band structure and the Poisson
ratio are in agreement with existing findings in graphene.
The anisotropy can be understood by considering the conse-
quences under large strains. The large strain parallel to C-C
bonds leads to weakly coupled zigzag carbon chains while
the large strain perpendicular to C-C chains results in weakly
coupled carbon dimmers. It is understandable that the two
different structures have different elastic properties. We note
that despite the interest of graphite as basic building block
for a variety of nanostructured materials, there is no com-
plete and reliable data set of its elastic properties. The ex-
perimental difficulty comes from the lack of large single
crystals while the computational efforts are limited by the
two completely different types of interatomic bonding—
exceptionally strong intralayer bonding and the weak van der
Waals interlayer bonding. Experiments using pyrolytic
graphite26 only observed the significant difference between
the in-plane Poisson ratio ��=0.16� and the out-of-plane
Poisson ratio ��=0.012� but failed in revealing the in-plane
anisotropy due to the large amount of randomly oriented
crystallites in the samples. Confirmation of the anisotropic
nature of graphene requires further experimental studies us-
ing high-quality samples of crystalline graphene and graph-
ite.

It was recently proposed that spin-orbital coupling in
graphene also leads to gap opening.5–8 However, first-
principles calculations8 showed that the gap induced by the
spin-orbital coupling is very small: about 10−6 eV. Our
study indicates that the band gap of graphene can be tuned in
the order of 10−1 eV not only by the strength but also by the
direction of the strain. Evidently, the strain distributions
dominate the gap opening in graphene. Our findings are im-
portant for understanding and controlling the transport prop-
erties of graphene systems.

This work was supported by the Chang Jiang Scholars
Program, Ministry of Education, China, and by the National
Natural Science Foundation of China �Grant No. 10774127�.

FIG. 6. �Color online� Poisson ratios of graphene under strains
parallel to or perpendicular to C-C bonds.
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